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SUMMARY

In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced
survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative mo-
lecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and
spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early andmonoclonal
seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion
and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with
subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of
APOE+/CD163+macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+mac-
rophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher
invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results
provide implications for the early detection and treatment of AM.

INTRODUCTION

Acral melanoma (AM), derived frommelanocytes in sun-shielded

palms, soles, and nails,1 is the major subtype of melanoma in

Asians.2 AM is often diagnosed at an advanced stage, which

frequently develops metastasis and shows a dismal prognosis.3

Early detection and prevention of AM could significantly improve

patient prognosis.4 Recent efforts have collectively portrayed

the unique genomic landscape of AM.5–9 However, these studies

mainly focus on late-stage invasive AM and our understanding of

early-stage AM is still very limited.

AM in situ (AMis) is an early-stage neoplasm manifesting

atypical melanocytes confined to the epithelial layer and ex-

hibiting a radial growth pattern.10–12 AMis could remain in

the preinvasive stage for many years, while only a small per-

centage of them would vertically invade the dermis, termed

as vertical invasion.13 This clinical observation indicates an

evolutionary bottleneck for vertical invasion that may require

additional genetic alterations.10 After this stage, the tumor

cells turn into invasive AM (iAM), and continue its progression

and expansion, termed regional expansion. Therefore, eluci-

dating the critical molecular determinants and evolutionary

dynamics during vertical invasion and regional expansion

may provide clues for the early detection and therapeutic

intervention of AM.14–16 However, due to the low rate of

AMis at diagnosis and the low purity of such samples, the

genomic landscape of AMis remains unknown and a detailed

comparison with iAM is lacking.

Recent advances in immunotherapies underline the vital role

of the tumor microenvironment (TME) during tumor progres-

sion.17,18 Multi-omic analyses have revealed diverse molecular

subsets of melanoma, including cutaneous melanoma (CM)

and uveal melanoma (UM), which correspond to different TME

subtypes and exhibit distinct responses to immunother-

apies.19–21 Several recent studies have described the immuno-

suppressive TME of AM at single-cell resolution.22,23 However,

how TME components contribute to AM invasion remains largely

unknown.
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Figure 1. Research strategy and cohort information

(A) Research strategy. ‘‘n’’, sample number.

(B) Representative H&E stainings. White dashes show laser-capture microdissection regions; black dotted lines mark the basement membrane.

(C) Composition of different acral melanoma (AM) cohorts per the AJCC stage. Chi-square test.

(legend continued on next page)
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To address the aforementioned issues, we assembled an AM

cohort of 287 patients, containing a core discovery cohort of 147

patients and two validation cohorts of 140 patients. Among these,

146 patients and 141 patients were diagnosed as AMis and iAM,

respectively. Integrative analysis of six omics datasets, including

whole exome sequencing (WES), multi-region sequencing based

on laser-capture microdissection (LCM), bulk RNA sequencing

(RNA-seq), single-cell RNA sequencing (scRNA-seq), spatial tran-

scriptomic sequencing, co-detection-by-indexing (CODEX), and

immunohistochemistry (IHC) datasets discovered invasion pre-

dictors, delineated the evolutionary dynamics, revealed threemo-

lecular subtypes, and identifiedAPOE+CD163+macrophagesasa

prognostic biomarker for AM. Functional experiments further

demonstrated that APOE+CD163+ macrophages could promote

the epithelial-mesenchymal transition (EMT) of tumor cells via

IGF1-IGF1R interaction.

RESULTS

Discovery cohort and genomic landscape
The discovery cohort contained 56 patients with AMis and 91 pa-

tients with iAM (Figures 1A and S1A–S1D, and Table S1). Pa-

tients with AMis were younger (mean = 56.9, range 29–79) than

those with iAM (mean = 63.6, range 30–88; p = 0.0011;

Table S1). Ulceration and adnexal involvement were present in

15% and 47% of patients, respectively (Figure S1D). Of note,

many iAM tumors contain malignant cells in the epidermis man-

ifesting as AMis lesions, and these tumors can also be termed

synchronous AMis-iAM. This dual phenotype of synchronous

AMis-iAM makes it an ideal model for investigating the intra-pa-

tient evolutionary dynamics of AM invasion. We applied LCM to

isolate matched and high-purity tumor samples from the same

patient (Figure 1B), including 12 Syn_AMis and 11 Syn_iAM re-

gions from 12 patients. For better data comparison, we also

collected 8 AMis regions from 8 pure AMis patients. Previous

AM cohorts mainly focused on iAM (American Joint Committee

on Cancer [AJCC] stages I–IV).5–7 By contrast, our cohort

enrolled 38% (56/147) of AMis patients (AJCC stage 0) (Fig-

ure 1C), providing us the opportunity to systematically charac-

terize these early-stage neoplasms.

The average coverage of WES was 3133, which enabled ac-

curate mutation calling and clonal composition reconstruction

(Figure S1E). The tumor mutational burden (TMB) of our cohort

(median 1.6, range 0.2–48.2) was comparable to previous AM

cohorts,6,7 higher than UM, and lower than CM (Figure 1D).19,24

The broad copy number alteration (CNA) profile (Figures 1E

and S1F–S1H) and mutational signatures of AM (Figures S1I

and S1J; Table S2) were similar to those of previous AM co-

horts,5,6 yet distinct from those of CM and UM.19 For instance,

the recently reported 22q11.21 amplification could also be iden-

tified, which exhibited a consistently poor prognosis (Fig-

ure S1H).6 These results validated the high quality of our cohort,

enabling the in-depth analysis of AM invasion.

Genomic comparison of AMis and iAM identifies
invasion-preferred drivers
To identify potential events driving the vertical invasion of AM, we

compared the genomic landscape between AMis and iAM sam-

ples (Figures 2A, S2A, and S2B). TMB was comparable (Fig-

ure 2B), and no singlemutationwas significantly enriched in either

AMis or iAM. Screening of gene combinations identified that the

mutational frequency of four driver genes (NRAS, KRAS, NF1, or

KIT) was significantly higher in iAM samples (p = 0.037; Figure 2C).

This result was validated in another AM cohort (Figure S2C).9 We

termed these four genes as ‘‘invasion-preferred drivers’’ for AM.

Induction of hotspot mutations (including NRASQ61K, NRASQ61R,

KRASG12D, and KITL576P) and knock out of NF1 independently

enhanced the invasion of an AM cell line, LM-MEL-45 (Figure 2D),

supporting the functional role of invasion-preferred drivers.Mean-

while, the mutational frequencies of either BRAF alone or in

combination with the invasion-preferred drivers were comparable

between the two groups (Figures S2D and S2E). This observation

is consistent with the notion that BRAF mutation is an initial and

ubiquitous driver acquired early in benign lesions.25 Taken

together, these results suggest that AM invasion is highly depen-

dent on acquiring certain driver mutations rather than simply

accumulating more mutations.

The percentage of subclonal mutations, i.e., mutations not

shared by all tumor cells in a certain tumor, can assess the extent

of intratumor heterogeneity (ITH). Interestingly, iAM samples had

a higher proportion of subclonal mutations than AMis samples

(Figure 2E), suggesting that a high level of ITH was associated

with invasiveness. No association between tumor purity and

subclonal mutations was observed, showing that our clonality

analysis was not confounded by tumor purity (Figure S2F). Since

genomic instability is a major source of ITH,26 we next quantified

the level of genomic instability with three independent indices,

including weighted genome integrity index (wGII) score, chromo-

somal copy number heterogeneity score (CNH-DNA), and chro-

mosomal instability score (CIN-RNA).27–29 As expected, iAM

showed a significantly higher level of genomic instability than

AMis (Figures 2F and S2G; Table S2). These results indicate

that high genomic instability might accelerate tumorigenesis

and contribute to acquiring one of the invasion-preferred drivers

for AMis.

Transcriptomic comparison of AMis and iAM revealed enrich-

ment of extracellular matrix (ECM) organization, EMT, KRAS

signaling, macrophage migration, and interferon-g (IFNg)

response pathways in iAM (Figures S2H–S2J), implying dysregu-

lation of the TME during AM invasion. Altogether, driver muta-

tions, genomic instability, and TME alterations collectively

contribute to AM invasion.

Adnexal involvement is associated with a high invasive
potential of AMis
To explore clinical predictors for AMis with high invasive poten-

tial, we traversed all available clinical variables (Table S1).

(D) Tumor mutational burden, TMB, across melanoma cohorts. CM, cutaneous melanoma; UM, uveal melanoma. The centerline shows the median; boxes

indicate the first and third quartiles; whiskers extend 1.5 times the interquartile range. Mann-Whitney U test.

(E) Frequency of alterations across melanoma cohorts. Amp, amplification; Del, deletion; SNV, single nucleotide variant. ***p < 0.001. See also Figure S1,

Tables S1 and S2.
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Figure 2. Genomic comparison between AMis and iAM

(A) Landscape of somatic alterations. Tumor mutational burden, TMB, is shown on the top, and altered frequency of each event is shown on the right side as

percentages. Amp, amplification; Del, deletion.

(B and C) Comparison of TMB (B, Mann-Whitney U test) and invasion-preferred drivers (C, one-sided Fisher’s exact test).

(D) Transwell invasion assays of LM-MEL-45 AM cell lines with driver gene induction or knock-out. Scale bar, 100 mm. Mean ± SD, Student’s t test, ***p < 0.001.

(legend continued on next page)
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Intriguingly, adnexal involvement of AM, defined as the existence

of malignant melanocytes in eccrine ducts,30 was the only vari-

able significantly enriched in iAM compared with AMis

(p = 0.0081; Figure 2G). While TMB was comparable (Fig-

ure S2K), the mutational frequency of the invasion-preferred

drivers was significantly higher in AM with adnexal involvement

for either all patients or AMis patients (Figure 2H). In addition,

AMis with adnexal involvement had a significantly higher rate

of clonal mutations than others (Figures S2L and S2M), suggest-

ing a more homogeneous clonal composition. Adnexal involve-

ment was also associated with higher phosphorylation levels of

extracellular signal-regulated kinase (ERK) and AKT (also known

as PKB, protein kinase B) in AMis patients (Figures S2N and

S2O). These results imply that AMis tumor cells acquiring inva-

sive driver mutationsmight have a higher proliferation advantage

and be subjected to positive selection and clonal expansion

(CE). Focusing on patients with AMis, adnexal involvement might

serve as a pathological predictor to discriminate AMis tumors

with invasive potential from those indolent ones. Supporting

this, retrospective analysis of 139 patients with AMis showed

that adnexal involvement was linked with shortened overall sur-

vival (OS) (p = 0.025; Figure 2I) and progression-free survival

(PFS) (p = 0.11, positive trend; Figure 2J) of AMis.

Synchronous AMis-iAM reveals an early andmonoclonal
seeding pattern for the vertical invasion
To investigate the intra-patient evolutionary dynamics of vertical

invasion and regional expansion, we analyzed synchronous

AMis-iAM by LCM (Figure 3A). We first compared the genomic

landscape across three different types of lesions, including

pure AMis, Syn_AMis, and Syn_iAM (Figure 1B). Surprisingly,

among 5 patients exhibiting the invasion-preferred drivers, the

mutations were shared by paired Syn-AMis and Syn-iAM, but

none was detected in pure AMis (Figure 3B). This result suggests

that the invasion-preferred driver is acquired before vertical inva-

sion, further corroborating their driver role in AM invasion.

Compared with other lesions, Syn_iAM showed a significantly

higher percentage of subclonal mutations yet comparable

TMB, resulting in higher ITH (Figures 3C and 3D). Consistently,

we also observed a significantly higher level of genomic

instability in Syn_iAM lesions, as shown by elevated wGII and

CNH-DNA scores (Figures 3E and 3F). These results support

our aforementioned observation that genomic instability and

ITH contribute to AM invasion.

Phylogenetic analysis of matched samples from the same pa-

tient revealed a universal pattern of short trunks and long

branches, suggesting a high extent of ITH in AM. The percentage

of shared mutations, represented by the length of the trunk, in

AM was significantly lower than that of CM (p = 0.00057;

Figures 3G, 3H, S3A, and S3B).31 This result indicates a relatively

early genetic divergence of Syn_iAM from Syn_AMis, in agree-

ment with its poorer prognosis than CM. Such ubiquitous early

seeding patterns were also different from the variable tree struc-

tures in other cancers,26,32,33 suggesting a unique invasion pro-

cess of AM.

We next inferred the origin and timing of vertical invasion. Jac-

card similarity index (JSI) can distinguish monoclonal seeding

(JSI < 0.3) from polyclonal seeding (JSI R 0.3).34 We observed

a ubiquitous monoclonal seeding pattern for all patients (Fig-

ure 3I; Table S3). In agreement with this, mutations of the inva-

sion-preferred drivers were mostly clonal in both Syn_AMis

and Syn_iAM (Figure 3J). Patients with multiple Syn_AMis le-

sions could provide more insights on the genetic relationship be-

tween Syn_AMis and Syn_iAM (Figure 3K). In patient AM18,

phylogenetic analysis showed that Syn_iAM originated from

the adjacent Syn_AMis_2 rather than the distant Syn_AMis_1.

Of note, the NRASQ61K mutation was among a few mutations

shared by Syn_AMis_2 and Syn_iAM yet absent in Syn_AMis_1.

This result indicates that Syn_AMis invaded the dermal layer

soon after acquiring NRASQ61K, supporting its role to drive verti-

cal invasion. Similar mutation spectrums of the non-shared mu-

tations across the three regions suggested a shared mutagenic

background (Figures 3K and S3A). Additionally, two patients

with paired primary tumor and metachronous relapse/metas-

tasis showed an early divergence near the root of the tree, indi-

cating that relapse/metastasis occurred early (Figures S3C and

S3D). These results emphasize the high degree of ITH in AM

and the necessity of early detection.

Two evolutionary patterns of the regional expansion
To interrogate the evolutionary patterns of regional expansion,

we inferred the clonal composition via cancer cell fraction

(CCF) analysis (Figure 3L). Pairwise CCF distribution showed

that 81.8% (9/11) of Syn_AMis lesions exhibited a clonal peak,

in sharp contrast to the 44.4% (4/9) of Syn_iAM lesions

(Figures 3M and S3E). Therefore, Syn_AMis tended to exhibit a

more homogeneous composition, consistent with our aforemen-

tioned observation that AMis with adnexal involvement, i.e., high

invasive potential, exhibited more clonal mutations. In Syn_iAM,

we characterized two distinct evolutionary patterns of regional

expansion: (1) CE, in which invasive tumors remain clonal and

(2) subclonal diversification (SD), in which tumors acquire diverse

subclones (Figure 3L). Patients stratified into the SD pattern ex-

hibited a higher degree of ITH that was not confounded by tumor

purity (Figures 3N and 3O). Considering that high ITH could

generate subclonal drivers,26,35 we speculated that the SD pro-

cess facilitated the acquisition of drivers that boost the regional

expansion (Figure 3P).

Integrative analysis identifies three molecular subtypes
Unsupervised hierarchal clustering of 81 AM samples with bulk

RNA-seq data identified three distinctmolecular subtypes, named

as C1, C2, and C3 (Figure 4A; Table S4). Subtype C1 showed

elevated keratin genes (Figure S4A), skin development and

(E and F) Comparison of subclonal mutations (E) and wGII score (F). Mann-Whitney U test.

(G) Frequency of patients with (Y) or without (N) adnexal involvement. Fisher’s exact test.

(H) Mutated frequency of invasion-preferred drivers with or without adnexal involvement among all patients (left) and AMis patients (right). Fisher’s exact test.

(I and J) Overall survival, OS, (I) and progression-free survival, PFS, (J) of AMis stratified by adnexal involvement status. Log-rank test. Data are represented as

boxplots in (B, E, and F). The centerline shows the median; boxes indicate the first and third quartiles; whiskers extend 1.5 times the interquartile range. See also

Figure S2 and Table S2.
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Figure 3. Evolutionary dynamics of AM invasion

(A and B) Sampling information (A) and mutational landscape (B) of laser-capture microdissection, LCM, regions. Matched regions are arranged together. Amp,

amplification; Del, deletion.

(C–F) Boxplots comparing tumor mutational burden, TMB (C), subclonal mutations (D), wGII (E), and CNH-DNA (F) scores. One-sided Mann-Whitney U test.

(G) Phylogenetic tree of AM19. Black, mutation; red, copy number gain; blue, copy number loss. Scale bar, 50 mutations.

(H) Comparison of shared variants. Mann-Whitney U test.

(I) Jaccard similarity index (JSI) of patients with two or more regions. Dashed line indicates the threshold of 0.3.

(legend continued on next page)
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keratinization pathways (Figure 4B), and low mitogen-activated

protein kinase (MAPK) activity (Figure S4B), thus was denoted

as the ‘‘keratin’’ subtype. Subtype C2 showed upregulation of

chromatin remodeling genes (KMT2A and KMT2C), DNA and his-

tonemethylation pathways, suggesting a ‘‘chromatin remodeling’’

phenotype. Subtype C3 exhibited upregulation of EMT-related

genes (TWIST2 and VIM), ECM organization and macrophage

infiltration pathways, and high proliferation activity, together

proposing a ‘‘proliferation’’ phenotype (Figures 4A, 4B, S4A,

and S4B).

Comparable TMB indicated that our classification was not

subjected to sampling biases (Figure S4C). Subtype C3 ex-

hibited the highest CIN-RNA, wGII, and CNH-DNA scores, indi-

cating high genomic instability (Figure 4C). Consistently, the

C3 subtype showed the highest proportion of subclonal muta-

tions (Figure 4D). These results collectively explain the malignant

characteristics of the C3 subtype from a genomic perspective.

As expected, the three subtypes showed distinct PFS and OS,

with C3 subtype exhibiting the poorest prognosis (Figures 4E

and S4D). This result showed that our classification was robust

and clinically relevant.

In contrast to C1 and C2, which were an even mixture of AMis

and iAM, subtype C3 was highly enriched with iAM (27/28) (Fig-

ure 4A), indicating a unique subset of iAM. Compared with iAM

in C1 and C2 (referred to as non-C3 iAM hereafter), C3 iAM ex-

hibited a shortened PFS (Figure 4F) and distinct malignant pheno-

types (Figures S4E–S4L). Importantly, C3 iAM exhibited signifi-

cantly more subclonal mutations (Figure 4G). 81% of C3 iAM

corresponded to the SD pattern in contrast to the 44% of non-

C3 iAM (Figure 4H). This result partially explained the dismal prog-

nosis of C3 iAM. Of note, no significant differences in the tumor T

stage, as determined by Breslow thickness and ulceration, were

found between the two groups (Figures 4I, S4M, and S4N), sug-

gesting that the invasion depth of AM may not necessarily corre-

late with its progression ability. Multivariate analysis confirmed

that our AM subtyping is an independent prognostic factor

(Figures 4I and S4M). The observation that classification of C3

iAM is independent to the tumor stages could be validated by a

published dataset (Figures S4O and S4P).6 Our subtyping high-

lighted that early-stage tumors (T1 and T2) in the C3 subtype

may exhibit highly malignant behavior and progress rapidly.

Therefore, biomarkers are needed for the early detection of these

C3 tumors, especially when the tumors are relatively small in size.

Three molecular subtypes exhibit distinct TME
composition
Consensus TME phenotypes were observed for the threemolec-

ular subtypes (Figures 4J and S5A; Table S4). Subtype C1

showed the lowest level of immune infiltration and pro-tumor

cytokines, and was designated ‘‘Low-immune’’. Subtype C2

showed the highest abundance of B cells and a relatively higher

T cell cytotoxicity, and designated as ‘‘Immune Activated’’. Sub-

type C3 showed the highest levels of immune infiltration, tumor-

associated macrophages (TAMs), and EMT (Figures S5B–S5D).

TAMs in C3 weremainly immunosuppressive macrophages (Fig-

ure 4K), showing high expression of CD163, APOE, C1QC (Fig-

ure 4L),36 and therapeutic targets like VSIG4 and CSF1R

(Figure S5B). These results together proposed an ‘‘Immune Sup-

pressed’’ phenotype for C3.

Consistent with the comparable TMB across the three sub-

types, TMB was not correlated with the TAM score (Figure S5E).

By contrast, the TAM score correlated with genomic instability

indices, including wGII (Figure 4M) and CNH-DNA scores (Fig-

ure S5F), and subclonal mutations (Figure 4N). In addition,

TAM score correlated with the EMT score (Figures 4O and

S5G) and poor prognosis in our cohort (Figures 4P, 4Q, and

S5H). These results collectively indicate that TAM infiltration

might promote tumor EMT and genomic instability for the C3

subtype and lead to poor prognosis.

scRNA-seq reveals APOE+/CD163+ macrophage
subsets
To interrogate the tumor and TME heterogeneity at the single-

cell level, we performed scRNA-seq on 8 AMis and 16 iAM tu-

mors. A total of 223,023 cells were harvested after stringent qual-

ity control and divided into 13 major cell populations (Figures 5A

and S6A–S6D; Table S5). Pseudo-bulk analysis with signature

genes for each subtype successfully identified all three subtypes

(Figure 5B). Malignant cells (Figure S6E) could be divided into 8

cell states, including melanocytic, EMT, IFN response, antigen

presentation, cycling, RNA processing, and two stress-related

states (Figures 5C and 5D). These states of AM cells were gener-

ally consistent with previously reported cell states of CM (Fig-

ure S6F).37–39 Consistent with our findings on the bulk level, tu-

mor cells in C3 subtypes exhibited the highest EMT score

(Figure 5E).

Five subsets of macrophages were identified, including

Mph_APOE_CD163, Mph_APOE, Mph_CD163, Mph_ISG15,

and Mph_TIMP1 (Figures 5F and S6G). Polarization analysis

showed that Mph_APOE_CD163, Mph_CD163, and Mph_APOE

were all immunosuppressive TAMs, hence collectively named

APOE+/CD163+ TAMs (Figure S6H). APOE+/CD163+ TAMs were

significantly enriched in the C3 subtype (Figure 5G) and positively

correlated with EMT scores (Figure 5H), validating our observa-

tions on the bulk level. Ligand-receptor analysis showed thatmac-

rophages exhibited the most abundant cell-cell interactions. High

levels of self-recruitment and interactions were observed within

APOE+/CD163+ macrophages (Figures 5I and S6I). APOE+/

CD163+ macrophages might promote the phenotypic transition

of tumor cells through EMT-related signaling pathways, including

(J) Cancer cell fraction (CCF) plot of invasion-preferred drivers.

(K) Phylogenetic tree (left), schematic (middle), and mutational spectrum (right) of AM18. Chi-square test.

(L) Representative CCF plots of clonal expansion (CE) and subclonal diversification (SD). Mutations are divided into four groups: private in Syn_AMis (blue), private

in Syn_iAM (red), clonal in both regions (CCFR 0.75, purple), and others (green). Kernel density of mutations is also shown, with the peak denoted by red arrows.

(M) Pie chart showing proportions of CE and SD.

(N and O) Comparison of tumor purity (N) and TMB (O). Mann-Whitney U test.

(P) Schematic of clonal dynamics during AM invasion. Data are represented as boxplots in (C–F, H, N, andO). The centerline shows themedian; boxes indicate the

first and third quartiles; whiskers extend 1.5 times the interquartile range. See also Figure S3 and Table S3.
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TGFB1-TGFBR2, TNF-TNFRSF1B, and IGF1-IGF1R (Figure

5J).40,41 Multi-color immunohistochemistry (mIHC) validated

the existence of APOE+ macrophages (Mph_APOE), CD163+

macrophages (Mph_CD163), and double-positive macrophages

(Mph_APOE_CD163) (Figure 5K). Additionally, APOE+/CD163+

TAMs, as well as its positive correlation with tumor EMT scores,

were validated using publically available AM scRNA-seq datasets

(Figures S6J–S6N).22,23

Spatial transcriptomic analysis confirms the direct
contact and close interaction between APOE+/CD163+

TAMs and EMT tumor cells
To investigate whether APOE+/CD163+ TAMs interact with

EMThigh tumor cells on the spatial level, we performed spatial

transcriptomics (ST) in 10 AM samples. Structures of multiple

epidermal layers, including basal, spinosum, and granulosum,

as well as the subcutaneous structure of eccrine sweat gland

and blood vessels can be clearly visualized, demonstrating the

high quality of our ST data (Figure 6A). Tumor regions can be

identified by the high expression of melanoma signature genes

like MLANA, PMEL, TYPR, and DCT (Figure 6B). For example,

in a C3 iAM patient, AM140, the tumor region is composed of

EMThigh tumor cells, characterized by elevated expression of

CDH2, and highly infiltrated with APOE+/CD163+ TAMs. By

contrast, such co-existence could not be identified in the non-

C3 patients, AM147.

We next performed quantitative analysis based on Voronoi di-

agrams after single cell segmentation. Cell identities were as-

signed by integrating ST data with scRNA-seq using Cyto-

SPACE.42 Cells mapped to the single cell-based tumor EMT

state were defined as EMT tumor cells, while non-EMT tumor

cells were those mapped to other tumor states (Figures 6C

and S7A). As expected, C3 patients showed a significantly

higher proportion of EMT tumor cells, as well as a significantly

higher level of APOE+/CD163+ macrophage infiltration (Fig-

ure 6D). Among C3 patients, APOE+/CD163+ macrophages

located much closer to EMT tumor cells compared with non-

EMT cells (Figure 6E). CellChat analysis showed that APOE+/

CD163+macrophage exhibited high activities as both the sender

(ligand) and receiver (receptor), confirming the high level of cell-

cell interactions (Figure 6F).43 Our previous single cell analysis

showed that IGF1-IGF1Rmight mediate the interaction between

APOE+/CD163+ macrophages and EMT tumor cells. Consistent

with this finding, APOE+/CD163+ macrophages exhibited the

highest level of insulin growth factor (IGF) signaling network as

sender and influencer cells, compared with other immune cells

(Figure 6G). These spatial data revealed the direct contact and

close interaction between APOE+/CD163+ TAMs and EMT tumor

cells.

Multiplexed spatial proteomics validates the interaction
between APOE+/CD163+ TAMs and EMT tumor cells
To further validate the spatial distribution and interaction be-

tween APOE+/CD163+ TAMs and EMT tumor cells at the protein

level, we performed 22-plex CODEX in 12 AM samples

(Figures 7A and S7B; Table S6). Epidermis was marked by

pan-cytokeratin (pan-CK) and E-cadherin. Tumor cells were

identified by positive expression of Melan-A. Immune cell infiltra-

tion was also observed in the tumor region, including CD4+

T cells (CD3e and CD4), CD8+ T cells (CD3e and CD8), B cells

(CD20), macrophages (CD68), and dendritic cells (CD11c). In

the adjacent normal region, the eccrine sweat gland wasmarked

by pan-CK expression and the ductal structure. Adnexal involve-

ment could be clearly identified by tumor cells directly contacting

the eccrine sweat gland.

EMT tumor regions could be identified in the C3 patients while

the non-C3 patients were mainly composed of non-EMT tumor

regions (Figure 7B). Spatial mapping revealed a positive correla-

tion between APOE+/CD163+ TAMs and EMT tumor cells (Fig-

ure 7C). Significantly higher expression levels of both IGF1 and

IGF1R were observed in the C3 patients (Figure 7D). Interest-

ingly, a C3 patient, AM138, contained both EMThigh and

EMTlow regions, enabling the intra-patient comparison (Fig-

ure 7E). APOE+/CD163+ TAMs were highly accumulated in the

EMThigh region (Figure 7F). The expression of both IGF1 and

IGF1R were also significantly elevated in the EMThigh region (Fig-

ure 7G). These results validated our observations at both single

cell and ST level, supporting that APOE+/CD163+ TAM might

promote the EMT of tumor cells via IGF1-IGF1R interaction.

Ex vivo and in vitro assays show that APOE+CD163+

TAMs promote tumor EMT via IGF1-IGF1R interaction
We next performed functional assays to interrogate the interplay

between APOE+/CD163+ macrophages and EMT tumor cells.

Figure 4. Molecular subtypes and TME of AM

(A) Three molecular subtypes inferred from bulk RNA-seq data. Clinical and genomic characteristics are annotated.

(B) Gene Ontology (GO) analysis. Gene ratio, percentage of specific pathway genes presented in differentially expressed genes; q, Benjamini-Hochberg adjusted

p value.

(C and D) Comparison of CIN-RNA, wGII, and CNH-DNA scores (C), and subclonal mutations (D).

(E and F) Progression-free survival, PFS, of all patients (E) and iAM patients (F) based on molecular subtypes.

(G) Comparison of subclonal mutations.

(H) Proportion of iAM patients assigned to subclonal diversification, SD, or clonal expansion, CE.

(I) T stage distribution (left) and multivariate Cox regression analysis of PFS (right) based on subtyping.

(J) Comparison of tumor microenvironment, TME, signatures. TAM, tumor-associated macrophage; EMT, epithelial-mesenchymal transition.

(K) TAM composition of C3 AM.

(L) Expression of immunosuppressive TAM markers.

(M–O) Correlation between TAM and subclonal mutations (M), wGII (N), or EMT (O) scores.

(P and Q) Overall survival, OS (P) and PFS (Q) of AM patients stratified by TAM score. Data are represented as boxplots in (C, D, G, and J–L). The centerline shows

themedian; boxes indicate the first and third quartiles; whiskers extend 1.5 times the interquartile range. Statistical differences determined with Mann-Whitney U

test in (C, D, and J–L), one-sided Mann-Whitney U test in (G), Fisher’s exact test in (H), Spearman correlation test (M–O), and log-rank test in (E, F, P, and Q).

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S4 and S5, and Table S4.
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Ex vivo analysis of macrophages isolated from paired peripheral

blood and tumor tissues showed that APOE+CD163+ macro-

phages were significantly enriched in the tumor tissue (Fig-

ure 8A). To investigate whether AM tumor cells could directly

induce the APOE+CD163+ phenotype of macrophages, we iso-

lated monocytes from healthy donors and co-cultured them

with the conditioned medium (C.M.) from the LM-MEL-45 cell

line in vitro. Flow cytometry analysis showed that the proportion

of APOE+CD163+ macrophages gradually increased from

1.2% at day 0 to 73.5% at day 14 (Figures 8B and S8A). RNA-

seq analysis also validated the time-dependent induction of

APOE+CD163+ macrophages, as demonstrated by the continu-

ously elevated expression of marker genes like APOE, CD163,

C1Q, and IGF1 (Figure 8C). Gene Set Enrichment Analysis

(GSEA) analysis showed the enrichment of APOE+CD163+

signature in themacrophages at day 14, compared with the con-

trol group (Figure 8D). Such elevated expression of APOE and

CD163 in macrophages could also be detected at the protein

level (Figure 8E). These results showed that AM cells could

induce the APOE+CD163+ phenotype of macrophages.

We next explored whether APOE+CD163+ macrophages

could promote the EMT of tumor cells. Ex vivo analysis

confirmed that C3 patients exhibited a significantly higher pro-

portion of EMT tumor cells than that of non-C3 patients (Fig-

ure 8F). After coculturing with APOE+CD163+ macrophages

in vitro, the LM-MEL-45 tumor cells expressed significantly

higher levels of mesenchymal marker genes, including CDH2,

TWIST1/2, SNAI1/2, etc. (Figure 8G). An elevated EMT signa-

ture was also enriched in the cocultured tumor cells, compared

with tumor cells alone (Figure 8H). Supporting this phenotype,

tumor cells changed from a rounded shape to an elongated

one after 5 days of coculture. To explore the secretion of

IGF1 from APOE+CD163+ macrophages (Figure 8I), ELISA anal-

ysis showed that the secreted IGF1 protein in the lower cham-

ber continuously elevated after cocultured with APOE+CD163+

macrophages (Figure 8J). Importantly, inhibition of this interac-

tion by the IGF1 inhibitor xentuzumab, the IGF1R inhibitor linsi-

tinib, or knocking-out IGF1R in tumor cells could significantly

reduce the N-cadherin expression, and reverse tumor cells

back to the round shape and the re-expression of E-cadherin

(Figures 8K and 8L). Taken together, these results demon-

strated that APOE+CD163+ macrophages could promote the

EMT of tumor cells via IGF1-IGF1R interaction.

APOE+CD163+ staining is a biomarker for inferior AM
prognosis
The aforementioned results intrigued us to further interrogate the

prognostic value of CD163 and APOE expression for AM pa-

tients. On the bulk RNA level, both APOE and CD163 expression

were significantly correlated with the TAM score (Figures S8B

and S8C), and the combination of APOE and CD163 showed

the highest prediction power for the C3 subtype (Figure S8D)

and post-surgery progression (Figure S8E). On the protein level,

we performed IHC staining on 96 AM patients with tissue sec-

tions available in the discovery cohort (Figures 8M and S8F;

Table S7). Notably, patients with APOE+CD163+ macrophages

had a five-year PFS of 54.7%, much worse than the 90.5%

for those patients without APOE+CD163+ macrophages

(p = 0.00017; Figure 8N). We also performed IHC staining on

87 AM patients in an independent validation cohort. Consis-

tently, double-positive staining of APOE and CD163 was signifi-

cantly associated with shortened PFS (p = 0.0019) and OS

(p = 0.0051) of AM patients (Figure 8O). Such double-positive

signals were also associated with poor prognosis in a published

AM dataset (Figure S8G). In addition, iAM and C3 patients

showed significant enrichment of APOE+CD163+ than their

counterparts, and the double-positive staining of these two

markers was an independent predictor (Figures S8H–S8K).

Taken together, these results showed that APOE and CD163

staining could serve as a promising prognostic biomarker for pa-

tients with AM.

DISCUSSION

Early diagnosis and prevention can significantly improve patient

survival in most cancer types.15 Our identification of adnexal

involvement correlated with high invasive ability of AMis showed

promising clinical value. First, AMis lesions exhibit distinct inva-

sive abilities, consistent with the clinical observation that some

AMis quickly progress and invade the dermis while others may

remain in the epidermis for years.13 Second, AMis with higher

invasive potential can be efficiently distinguished from indolent

AMis by routine pathological examination or genetic screening.

Detailed pathological examination of the dermis should be per-

formed on these AMis with adnexal involvement to avoidmissing

detection of invasive tumor cells. By contrast, those indolent

pure AMis are potential precursor lesions that do not have the

Figure 5. TME of AM at the single-cell resolution

(A) Cell annotation. ESG, eccrine sweat gland; Neu, neutrophil; SMC, smooth muscle cell. See full abbreviation list in Table S5.

(B) Subtyping of 24 tumors based on scRNA-seq. Rows denote the top 200 significantly upregulated genes in each subtype; columns indicate individual samples.

(C) Cell states of tumor cells.

(D) Enriched functional terms for each cell state.

(E) Epithelial-mesenchymal transition, EMT, scores among three subtypes. One-sided Student’s t test.

(F) Tumor-associated macrophages, TAMs, labeled by cluster identities (left) and marker gene expressions (right).

(G) Comparison of APOE+/CD163+ macrophage proportions. One-sided Student’s t test.

(H) Sperman correlation between APOE+/CD163+ macrophage proportions and EMT scores across patients. Points colored by molecular subtypes.

(I) Ligand-receptor analysis based on CellPhoneDB. Scaled expression heatmap of chemokine genes among cell clusters (left) and TAM clusters (right). In-

teractions are connected by lines and colored by the dominant TAM clusters.

(J) Ligand-receptor analysis based on NicheNet. Dot plots show predicted top ligands in TAM (left) and targets in tumor cells (bottom), and the heatmap shows

interaction potential (middle). Ap, antigen presentation.

(K) Representative mIHC images showing APOE+ (left), CD163+ (middle), and APOE+CD163+ macrophages (right). Scale bar, 10 mm. Data are represented as

boxplots in (E and G). The centerline shows the median; boxes indicate the first and third quartiles; whiskers extend 1.5 times the interquartile range. *p < 0.05,

**p < 0.01. See also Figure S6 and Table S5.
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capacity to progress, which may lead to overdiagnosis. Further

investigations are warranted to identify biomarkers for these

indolent AMis. Third, we recommend regular follow-up checks

for these patients with high-invasion AMis after surgical resec-

tion to monitor disease progression.

The evolutionary dynamics ofmelanoma have been intensively

investigated, while those of AM remained unclear.44,45 AM ex-

hibits a prominent field effect. Certain genetic and environmental

factors lead to multiple nests of transformed cells or precursor

lesions in the skin. Acral nevi are a special form of precursor

lesion in AM. Smalley et al. showed that BRAF mutated at a

high frequency of 86% in acral nevi, indicating that acral nevi

may not be the precursor lesion for most AM.25 Our identification

of BRAF mutation not included in the four invasion-preferred

drivers is consistent with this observation. Our cohort only in-

volves AMis and iAM yet lacks adjacent normal skin. Detailed

genomic profiling of the normal regions may give additional in-

sights into the field effect of AM.

We showed that during vertical invasion, the tumor cells fol-

lowed an early andmonoclonal seeding pattern. Themonoclonal

seeding pattern suggested that AM invasion followed an evolu-

tionary bottleneck model within which additional mutations of

the invasion-preferred drivers were required to facilitate vertical

invasion. Therefore, patients with AMmay benefit from advances

Figure 6. Spatial transcriptomics analysis

(A) Annotated spatial map of AM140 and AM147. Black dashed lines denote tumor regions. Scale bar, 1 mm.

(B) Spatial expression levels of selected marker genes. Scale bar, 1 mm.

(C) Representative images of single cell segmentation. Scale bar, 100 mm.

(D) Proportions of epithelial-mesenchymal transition, EMT, tumor cells (top) and APOE+/CD163+ macrophages (bottom) between C3 and non-C3 tumors. One-

sided Mann-Whitney U test. *p < 0.05, **p < 0.01.

(E) Comparison of the distance of tumor cells to the nearest APOE+/CD163+ macrophage in C3 patients. Student’s t test. ***p < 0.001.

(F) Activities of cells acting as sender cells (x axis) or receiver cells (y axis) in C3 patients based on CellChat.

(G) IGF signaling interactions across cell clusters. Data are represented as boxplots in (D and E). The centerline shows the median; boxes indicate the first and

third quartiles; whiskers extend 1.5 times the interquartile range. See also Figure S7.
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in therapies targeting these driver mutations.46 The early seeding

pattern highlighted the necessity of early detection of AMis

before invasion. A recent study described the positional onco-

genesis for AM,47 which raises the possibility that iAM directly

originates from adnexal structure and there may be a different

cell of origin to AMis. However, in our cohort, many identical mu-

tations were shared between matched Syn_AMis and Syn_iAM

lesions, suggesting that iAM was derived from AMis rather

than from an independent lineage. During regional expansion,

the SD process may be driven by a high level of genomic insta-

bility. The accumulation of subclonal mutations could propel the

acquisition of additional drivers and boost the progression of

iAM. Consistent with this finding, close associations among the

SD pattern, higher genomic instability, higher ITH, and poor

prognosis were identified in the C3 iAM.

Recent single cell analyses characterized lower overall immune

infiltration and fewer effector CD8+ T cells and natural killer (NK)

cells in AM, depicting a more suppressive immune microenviron-

ment, comparedwithCM.22,23 Our integrative analysis highlighted

a unique population of immunosuppressive APOE+/CD163+ mac-

rophages. CD163 has long been used as a pan-macrophage

marker and is associated with immunosuppression.48 APOE is

mainly involved in lipoprotein metabolism and widely expressed

across tumor and immune cells.49 C1Q+TREM2+APOE+ macro-

phages are reported to be associated with early recurrence in

clear cell renal cell carcinoma.36 The functional role and clinical

relevance of APOE+/CD163+ macrophages remain less explored.

Our study demonstrates that APOE+/CD163+macrophages could

promote the EMT of tumor cells via the IGF1-IGF1R interaction,

thus exhibiting a pro-tumor role and are associated with poor

prognosis. APOE and CD163 staining could also serve as efficient

biomarkers to identify the C3 iAM or AM patients with a worse

prognosis, which might benefit from treatments targeting the

IGF1-IGF1R interaction. Of note, 50% of early-stage tumors (T1

and T2 stages) are determined as the C3 iAM. APOE and

CD163 staining may also help identify these iAM tumors with

high progression capacity at a relatively early timing point. In

sum, our study provides clinical implications for the diagnosis,

prognosis, and treatment of AM.
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Figure 8. Functional assays

(A) Flow cytometry plots showing APOE+CD163+macrophages frommatched peripheral blood (PB) and tumor tissues of AMpatients (n = 4). The bar plot displays

APOE+CD163+ macrophage proportions. Paired Student’s t test.

(B) Co-culture system ofmonocytes from the PB of healthy donors and the C.M. of the LM-MEL-45 tumor cell line. The bar plot shows the induced APOE+CD163+

macrophage proportions at different time points and conditions. Data shown as n = 3 in each group. A representative flow cytometry plot is shown on the right.

Student’s t test.

(C) RNA expression heatmap for signature genes of APOE+CD163+ macrophages. n = 3 biological replicates for each column.

(D) Enrichment of gene signature based on GSEA analysis between the indicated groups. Permutation test, n = 100,000 permutations.

(E) Representative images showing APOE and CD163 expression of macrophages. Scale bar, 100 mm. Quantifications are shown on the right side. n = 10 fields

per group. Student’s t test.

(F) Flow cytometry plots showing epithelial-mesenchymal transition (EMT) tumor cells from C3 and non-C3 AM samples (n = 4). The bar plot displays EMT tumor

cell proportions. Student’s t test.

(G) RNA expression heatmap for EMT marker genes in LM-MEL-45 cells (n = 3 biological replicates for each row).

(H) Enrichment of EMT signature based on GSEA analysis. Permutation test, n = 100,000 permutations.

(I) IGF1 expression levels across macrophages subsets in scRNA-seq data.

(J) Co-culture system to assess the influence of APOE+CD163+ macrophages on tumor cells. IGF1 protein secreted by macrophages to the lower chamber is

quantified by ELISA. Data shown as n = 3 per group. Student’s t test.

(K) Assessment of tumor cells’ EMT level in the co-culture system in (J). N-cadherin expression is quantified by flow cytometry at different conditions as indicated.

Two sgRNAs (#1 and #2) were used to knock out IGF1R in the tumor cell line. WT, wild type. n = 3 per group. Student’s t test.

(L) Representative images showing E-cadherin and N-cadherin expression of LM-MEL-45 tumor cells. Scale bar, 50 mm.Quantifications can be found on the right

side. n = 10 fields per group. Student’s t test.

(M) Representative IHC images of APOE and CD163 in negative (no infiltration) and positive (infiltration) patients. Scale bar, 100 mm.

(N and O) Progression-free survival, PFS, and overall survival, OS, of patients with AM in the discovery cohort (N) and validation cohort (O) stratified by APOE and

CD163 staining. Log-rank test. Data are represented as mean ± SD in (A, B, E, F, and L). **p < 0.01, ***p < 0.001. See also Figure S8 and Table S7.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-human MelanA Abcam Cat# ab112076

Mouse anti-human CD163, clone 10D6 Abcam Cat# ab74604; RRID: AB_128790

Rabbit anti-human ApoE, clone D17N Cell Signaling Technologies Cat# 13366S; RRID: AB_2798191

Mouse anti-human CD68, clone KP1 ZSGB-Bio Cat# ZM-0060; RRID: AB_2904190

Mouse anti-human E-cadherin, clone 4A2 Cell Signaling Technologies Cat# 14472S; RRID: AB_2728770

Rabbit anti-human N-cadherin, clone D4R1H Cell Signaling Technologies Cat# 13116S; RRID: AB_2687616

Rabbit anti-human FN1, clone E5H6X Cell Signaling Technologies Cat# 26836S; RRID: AB_2924220

Rabbitt anti-human phospho-Akt (Ser473) Cell Signaling Technologies Cat# 9271S; RRID: AB_329825

Rabbit anti-human phospho-p44/42 MAPK

(ERK1/2) (Thr202/Tyr204)

Cell Signaling Technologies Cat# 9101S; RRID: AB_331646

E-cadherin-BX014 (4A2C7)—ATTO

550-RX014 Kit

Akoya Biosciences Cat# 4250021; RRID: AB_2895057

Formerly CD68-BX015 (KP1)—Alexa

Fluor� 647-RX015

Akoya Biosciences Cat# 4550113; RRID: AB_2935894

CD20-BX007 (L26)—Alexa

Fluor� 750-RX007

Akoya Biosciences Cat# 4450018; RRID: AB_2915939

CD8-BX026 (C8/144B)—ATTO

550-RX026

Akoya Biosciences Cat# 4250012; RRID: AB_2915960

CD4-BX003—Alexa Fluor� 647 Akoya Biosciences Cat# 4550112; RRID: AB_3094499

Pan-Cytokeratin-BX019 (AE-1/AE-3)—Alexa

Fluor� 488-RX019

Akoya Biosciences Cat# 4150020; RRID: AB_2909509

CD163-BX069—ATTO 550-RX069 Akoya Biosciences Cat# 4250079; RRID: AB_2935895

CD3e-BX045(EP449E)—Alexa

Fluor� 647-RX045

Akoya Biosciences Cat# 4550119; RRID: AB_2936080

Ki67-BX047 (B56)—ATTO 550-RX047 Akoya Biosciences Cat# 4250019; RRID: AB_2895046

CD11c-BX024(118/A5)—Alexa

Fluor� 647-RX024

Akoya Biosciences Cat# 4550114; RRID: AB_3083459

HLA-DR-BX033(EPR3692)—Alexa

Fluor� 647-RX033

Akoya Biosciences Cat# 4550118; RRID: AB_3080864

T-bet-BX052—ATTO 550-RX052 Akoya Biosciences Cat# 4250086

PD-L1-BX043—Alexa Fluor� 647-RX043 Akoya Biosciences Cat# 4550072

IFNG-BX020—ATTO 550-RX020 Akoya Biosciences Cat# 4250062

Collagen IV-BX042—Alexa

Fluor� 647-RX042

Akoya Biosciences Cat# 4550122; RRID: AB_2927676

Anti-APOE, clone D6E10,

BSA and Azide free

Abcam Cat# ab1906; RRID: AB_302668

Anti-IGF1R, clone EPR23027-204,

BSA and Azide free

Abcam Cat# ab267345

Anti-CD86, clone EP1158-37,

BSA and Azide free

Abcam Cat# ab269593; RRID: AB_3073666

Anti-N-cadherin, clone EPR1791-4,

BSA and Azide free

Abcam Cat# ab271856; RRID: AB_2928049

Anti-MELAN-A, clone EPR20380,

BSA and Azide free

Abcam Cat# ab222483

Anti-CDKN2A/p16INK4, clone EPR1473,

BSA and Azide free

Abcam Cat# ab186932; RRID: AB_2895712
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-IGF1, clone SPM406,

BSA and Azide free

Novus Cat# NBP2-34409

APC/Cyanine7 anti-human CD45 BioLegend Cat# 368516; RRID: AB_2566376

Brilliant Violet 510� anti-human CD14 BioLegend Cat# 301842; RRID: AB_2561379

PE anti-human APOE BioLegend Cat# 803405; RRID: AB_2801139

PE anti-human CD163 BioLegend Cat# 333606; RRID: AB_1134002

Brilliant Violet 421� anti-human CD163 BioLegend Cat# 333612; RRID: AB_2562462

PE/Cyanine7 anti-human HLA-DR BD Pharmingen Cat# 560651; RRID: AB_1727528

APC anti-human MelanA, clone EPR20380 Abcam Cat# ab225498

Brilliant Violet 421� anti-human E-cadherin BioLegend Cat# 147319; RRID: AB_2750483

PE anti-human N-cadherin BioLegend Cat# 350806; RRID: AB_10660824

Biological samples

Tumor, adjacent normal skin tissues and peripheral

blood samples from patients diagnosed with

acral melanoma

This paper N/A

Critical commercial assays

QIAamp DNA Micro Kit Qiagen Cat# 56304

DNeasy Blood & Tissue Kit Qiagen Cat# 69504

AllPrep DNA/RNA Mini Kit Qiagen Cat# 80284

CLEANNGS DNA Kit GC biotech Cat# CNGS-0500

SureSelectXT Human All Exon V6 Agilent Technologies Cat# 5190-8864

VAHTS mRNA-seq v2 Library

Prep Kit for Illumina

Vazyme Cat# NR601-02

Tumor Dissociation Kit, human Miltenyi Biotec Cat# 130-095-929

Single Cell 3’ Library and Gel Bead Kit v3.1 10X Genomics Cat# PN-1000075

Tissue Optimization Slides and

Gene Expression Slides

BMKMANU Cat# S1000

Agilent Technologies Bioanalyzer

High Sensitivity kit

Agilent Technologies Cat# 5067-4626

Antibody conjugation kit Akoya Biosciences Cat# 7000009

Lipofectamine 3000 Transfection Agent ThermoFisher Cat# L3000015

Lymphoprep density gradient medium STEMCELL Cat# 07861

Zombie UV Fixable Viability Kit BioLegend Cat# 423108

ELISA Kit for Insulin Like Growth Factor 1 Cloud-Clone Cat# SEA050Hu

Deposited data

Multi-omic data of AM This paper GSA: PRJCA025155

Public bulk genomic and RNA data of AM Farshidfar et al.6 GEO: GSE162682

Public WGS data of AM Newell et al.7 EGA: EGAD00001005500

Public scRNA data of AM Zhang et al.22 GEO: GSE215121

Public scRNA data of AM Li et al.23 GEO: GSE189889

Public genomic data of CM Hayward et al.24 EGA: EGAS00001001552

TCGA melanoma datasets Cancer Genome Atlas

Research Network

https://portal.gdc.cancer.gov/

Oligonucleotides

IGF1R-sgRNA #1, GTGGAGAACGACCATATCCG This paper N/A

IGF1R-sgRNA #2, TCAGTACGCCGTTTACGTCA This paper N/A

NF1-sgRNA #1, AGTCAGTACTGAGCACAACA This paper N/A

NF1-sgRNA #2, TCTCTCTCAGTTGATTATAT This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

BWA-mem2 2.0pre1 Vasimuddin et al.51 https://github.com/bwa-mem2/

bwa-mem2; RRID: SCR_022192

Samtools 1.10 Li et al.52 http://samtools.sourceforge.net/;

RRID: SCR_002105

GATK 4.1.7.0 McKenna et al.53 https://software.broadinstitute.org/

gatk/; RRID: SCR_001876

Mutect2 Cibulskis et al.54 https://software.broadinstitute.org/

cancer/cga/mutect

VarScan 2.4.2 Koboldt et al.55 http://varscan.sourceforge.net/;

RRID: SCR_006849

Strelka 2.9.10 Kim et al.56 https://github.com/Illumina/strelka;

RRID: SCR_005109

ANNOVAR Wang et al.57 http://annovar.openbioinformatics.org/

en/latest/; RRID: SCR_012821

Integrative Genomics Viewer Thorvaldsdottir et al.58 http://software.broadinstitute.org/

software/igv/; RRID: SCR_011793

MutSigCV 1.41 Lawrence et al.59 https://software.broadinstitute.org/

cancer/cga/mutsig

dNdScv 0.0.1.0 Martincorena et al.60 https://github.com/im3sanger/dndscv;

RRID: SCR_017093

Sequenza 3.0.0 Favero et al.61 https://github.com/cran/sequenza;

RRID: SCR_016662

CNVkit 0.9.7 Talevich et al.62 https://cnvkit.readthedocs.io/en/stable/;

RRID: SCR_021917

GISTIC 2.0.23 Mermel et al.63 https://software.broadinstitute.org/

cancer/cga/gistic; RRID: SCR_000151

SigProfilerExtractor 1.0.19 Islam et al.64 https://github.com/AlexandrovLab/

SigProfilerExtractor

deconstructSigs 1.8.0 Rosenthal et al.65 https://github.com/raerose01/deconstructSigs

Pyclone 0.13.1 Roth et al.66 https://github.com/aroth85/pyclone;

RRID: SCR_016873

GSVA 1.32.0 Hanzelmann et al.67 https://bioconductor.org/packages/

release/bioc/html/GSVA.html;

RRID: SCR_021058

ape 5.5 Paradis et al.68 http://ape-package.ird.fr/;

RRID: SCR_017343

STAR 2.7.3a Dobin et al.69 https://github.com/alexdobin/STAR;

RRID: SCR_004463

RSEM 1.3.3 Li et al.70 http://deweylab.github.io/RSEM/;

RRID: SCR_013027

DESeq2 1.24.0 Love et al.71 http://bioconductor.org/packages/release/

bioc/html/DESeq.html; RRID: SCR_015687

clusterProfiler 3.14.3 Yu et al.72 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html;

RRID: SCR_016884

PROGENy 1.16.0 Schubert et al.77 https://www.bioconductor.org/packages/

release/bioc/html/progeny.html

estimate 1.0.13 Yoshihara et al.78 https://bioinformatics.mdanderson.org/

estimate/rpackage.html

CIBERSORT Newman et al.79 https://cibersort.stanford.edu/;

RRID: SCR_016955

xCell Aran et al.80 https://xcell.ucsf.edu/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Ning Zhang

(zhangning@bjmu.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All sequencing data are available at the Genome Sequence Archive at the National Genomics Data Center (Beijing, China) under the

BioProject ID: PRJCA025155. The data deposited and made public are compliant with the regulations of the Ministry of Science and

Technology of China. Accession numbers for public datasets are detailed in the key resources table. We built an online website for

data sharing, visualization, and re-analysis (http://meta-cancer.cn/AMatlas/). Software and code used in this study are referenced in

STAR Methods and the key resources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We performed a systematic review of the case records of patients with treatment-naı̈ve AM undergoing surgical resection at the

Department of Dermatology at Peking University First Hospital (Beijing, China) from 2016 to 2023. Diagnostic pathological slides,

including H&E (hematoxylin and eosin) and immunohistochemistry for Melan-A (Abcam, Cat#ab112076), were reviewed indepen-

dently by two experienced dermatologists to verify the diagnoses. A total of 287 patients with treatment-naı̈ve AM were involved,

including a core discovery cohort, an expanded AMis cohort, and a validation cohort (Figure S1A). The expanded AMis cohort

(139 patients) was collected for the assessment of the predictive value of adnexal involvement for AMis. The validation cohort (87

patients) was collected for the independent validation of the prognostic value of APOE and CD163 staining. Multi-omic analyses

were performed on the 147 patients in the core discovery cohort, including:

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

survival 3.2.13 N/A https://cran.r-project.org/web/packages/

survival/index.html; RRID: SCR_021137

Cell Ranger 6.1.2 10X Genomics https://www.10xgenomics.com/;

RRID: SCR_017344

Seurat 4.0.5 Hao et al.81 https://cran.r-project.org/web/packages/

Seurat/index.html; RRID: SCR_016341

inferCNV 1.6.0 Tickle et al.83 https://github.com/broadinstitute/infercnv;

RRID: SCR_021140

Harmony 1.2.0 Korsunsky et al.84 https://github.com/immunogenomics/harmony;

RRID: SCR_022206

CellPhoneDB 2.1.7 Efremova et al.85 https://github.com/Teichlab/cellphonedb;

RRID: SCR_017054

NicheNet Browaeys et al.86 https://github.com/saeyslab/nichenetr

BSTMatrix 2.3j N/A http://www.bmkmanu.com/portfolio/tools

cellpose 2.2.3 Stringer et al.87 https://github.com/MouseLand/cellpose;

RRID: SCR_021716

CytoSPACE 1.0.6a0 Vahid et al.42 https://github.com/digitalcytometry/cytospace

CellChat 2.1.1 Jin et al.43 https://github.com/sqjin/CellChat;

RRID: SCR_021946

QuPath 0.5.0 Bankhead et al.88 https://qupath.github.io/; RRID: SCR_018257

FlowJo 10.8.1 N/A https://www.flowjo.com/

Image J 1.54f N/A https://imagej.net/ij/

pheatmap 1.0.12 N/A https://www.rdocumentation.org/packages/

pheatmap/versions/1.0.12; RRID: SCR_016418

Rstudio 1.3.1093 N/A https://www.rstudio.com/products/rstudio/;

RRID: SCR_000432
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(1) WES and bulk RNA seq were performed on the DNA (n=92) and RNA (n=81) obtained from 94 patients that had high-quality

fresh frozen tissues, respectively;

(2) Multi-region WES was performed on 31 regions isolated from 20 patients by LCM;

(3) scRNA-seq was performed on 24 samples with fresh surgical tumor tissues;

(4) Spatial transcriptomic profiling was performed on 10 patients;

(5) Spatial protein profiling with 22-plex CODEX was performed on 12 patients with formalin-fixed paraffin-embedded (FFPE)

tissues;

(6) IHC staining of APOE and CD163 was performed on 96 patients with enough FFPE tissues.

All the samples and clinical information were collected following the Declaration of Helsinki and protocols approved by the ethics

committee of the Peking University First Hospital. Written informed consent was obtained from all patients enrolled in this study. The

survival data of patients with AMwere collected with a median follow-up time of 47 months. Detailed descriptions of the samples are

provided in Table S1.

METHOD DETAILS

DNA and RNA extraction
96 fresh frozen tumor samples from 94 patients with AMwere sent to simultaneous DNA and RNA extraction. For each sample, DNA

and RNA were isolated following the manufacturer’s protocol using AllPrep DNA/RNA Mini Kit (Qiagen, Cat#80284). After concen-

tration quantification and fragment analysis, 92 samples and 81 samples with adequate high-quality DNA and RNA were subjected

to library construction and sequencing, respectively. DNA from all peripheral blood and adjacent normal samples was isolated using

the DNeasy Blood & Tissue Kit (Qiagen, Cat#69504). The concentration of DNAwas quantified byQubit 3.0 (Invitrogen) and the length

of DNA segments was checked using Fragment Analyzer (Advanced Analytical Technologies) before sequencing.

LCM
31 tumor lesions from 20 patients, consisting of 8 AMis and 12 iAM, were isolated using LCM.50 Briefly, fresh frozen tumor tissues

embedded in optimal cutting temperature compound (OCT) were sliced into 4-6 reference sections (7 mm) and 15-20 LCM sections

(10 mm) (PEN slide, Leica, Cat#11505158). Reference sections were stained using IHC (marker: Melan-A, Abcam, Cat#ab112076) to

define the tumor regions by two experienced pathologists independently. Each lesion in the continuous LCM sections corresponding

to the defined tumor region was then isolated into a specific 200 ml tube using the Leica LMD6000 Microsystem. Finally, DNA was

extracted using the QIAamp DNA Micro Kit (Qiagen, Cat#56304) according to the manufacturer’s protocol.

Whole exome sequencing
The sequencing library for WES was constructed using the CLEANNGS DNA Kit (GC biotech, Cat#CNGS-0500). Briefly, genomic

DNA was enzymatically disrupted to a size of 180-280 bp, end polished, A-tailed, ligated with the sequencing adapter, and amplified

through polymerase chain reaction (PCR). After amplification, exome regions were captured by SureSelectXT Human All Exon V6

(Agilent Technologies, Cat#5190-8864). The products were purified, quantified, and then sequenced on the Illumina NovaSeq

6000 platform to generate 150 bp paired-end reads.

Somatic mutation calling
Paired-end Illumina readswere aligned to human genome hg19 (UCSC) using BWA-mem2 (v2.0pre1)51 with default parameters. SAM

files were then converted to BAMfiles and sorted by chromosomal coordinates using Samtools (v1.10).52 The GenomeAnalysis Tool-

kit (GATK v4.1.7.0)53 was utilized to remove PCRduplicates and recalibrate the base quality score. Themean coverages ofWESwere

3263 and 3133 for tumor samples and normal samples, respectively.

For LCM samples, point mutations and indels were identified using Mutect254 embedded in GATK, VarScan (v2.4.2),55 and Strelka

(v2.9.10).56 All variants were annotated with ANNOVAR.57 High-confidence point mutations and indels were determined according to

the following criteria: (1) at least 103 coverage was required in the normal sample of each patient bearing no more than 13mutation

coverage; (2) at least 103 total coverage was required in tumor samples with at least 33mutation coverage was required; (3) variants

listed in dbSNP 138were removed unless they were documented in the Catalog of SomaticMutations in Cancer (COSMIC) database;

(4) variants recorded in the National Heart, Lung, and Blood Institute Exome Sequencing Project were excluded. Finally, variants

identified by at least 2 of 3 callers were kept after filtering.

For the remaining samples, variants were detected by Mutect2 and VarScan and were annotated and filtered in the same way.

Point mutations identified by Mutect2 and indels supported by both Mutect2 and VarScan were retained. Indels were manually

checked via the Integrative Genomics Viewer.58 Since germline samples (peripheral blood or adjacent normal) were not available

for 14 samples (listed in Table S1), mutations were called by Mutect2 using the panel of normal as a reference created from pooled

normal samples in this study. The variants of these 14 samples were excluded from significantly mutated gene identification and

mutational signature analysis. All nonsynonymous somatic mutations identified in these samples are listed in Table S2.

ll
OPEN ACCESS Article

e5 Cancer Cell 42, 1067–1085.e1–e11, June 10, 2024



Significantly mutated gene
Significantly mutated genes (SMG, also known as potential driver genes) were determined by MutSigCV (v1.41)59 and dNdScv

(v0.0.1.0).60 Briefly, all variants, including synonymous and nonsynonymous variants, were passed to MutSigCV and dNdScv with

default parameters to identify significantly enriched genes and detect genes under positive selection, respectively. Genes with a

q value less than 0.1 were declared significant. MutSigCV identified 4 SMGs (NPIPB9, NRAS, RBMX, and C6orf201) and dNdScv

identified 1 SMG (NRAS), thus NRAS was the only SMG supported by both algorithms.

Copy number alteration
Tumor ploidy, cellularity, and allelic-specific copy number of tumor samples that had paired normal samples were inferred by Se-

quenza (v3.0.0)61 with default parameters. For dual-extracted samples, since the lack of peripheral blood and adjacent normal sam-

ples in 14 patients, pooled reference was constructed first using CNVkit (v0.9.7).62 Then CNVkit was performed with default param-

eters to determine segments with abnormal copy number status in all 92 samples. After segmentation, GISTIC2.0 (Genomic

Identification of Significant Targets in Cancer, v2.0.23)63 was applied to identify recurrent focal gain and loss regions. For LCM sam-

ples, copy number alterations of each tumor region were determined by CNVkit using paired normal samples as reference.

Mutational signature
De novomutational signatures were extracted from 98 samples with available paired normal samples. For LCM patients, mutations

called in all regions from the same patient were assigned to a pseudo-mixed sample for tumor mutation burden analysis and signa-

ture extraction. The trinucleotide substitution context matrix of all single-nucleotide variants was used as input for

SigProfilerExtractor (v1.0.19)64 to accomplish mutational signatures modeling using non-negative matrix factorization. Three stable

signatures termed signature A, B, and C were deciphered. The cosine similarity between three signatures and COSMIC single base

substitution signatures was calculated to presume the corresponding potential etiological factors. Profiling of COSMIC signatures

was performed using deconstructSigs (v1.8.0).65

CCF and subclonal structure
CCF of all mutations was estimated and the subclonal structure of each sample was then inferred based on the Bayesian clustering

method using Pyclone (v0.13.1).66 Tumor purity and allelic-specific copy numbers obtained from Sequenza were utilized. 14 tumor-

only samples were excluded. Mutations with CCF greater than or equal to 0.75 were considered clonal mutations, and others were

subclonal mutations.

Next, the CE and SD patterns are determined for the regional expansion of iAM after the vertical invasion. This analysis focuses on

the private mutations in Syn_iAM for a certain patient. If these private mutations exhibited a subclonal peak (< 0.75), it means these

tumor cells are acquiring new subclones, and hence categorized as SD. By contrast, if the private mutations are all clonal and only

exhibit a clonal peak, it means these tumor cells are not acquiring new subclones and remain a highly clonal structure. Therefore,

these samples are defined as CE.

Scores assessing genomic instability
(1) wGII. The wGII score is calculated based on each sample’s CNA profile (CNVkit) as previously described.29 Briefly, the ploidy

is determined first as the weighted integer copy number by the lengths and copy numbers of segments. Then the percentage

of gained and lost regions over the full length of each autosomal chromosome is calculated. The wGII score is defined as the

average percentages over the 22 autosomal chromosomes.

(2) CNH-DNA. CNH-DNA score is a scalable measure of intertumoral heterogeneity and genomic instability from copy-number

profiling. CNH-DNA is defined as the minimum of the mean distances of segments to the closest integer copy number over

all possible combinations of ploidies and purities. The CNH-DNA score of each WES sample is calculated as previously

described.27

(3) CIN-RNA. CIN-RNA score measures aneuploidy in tumor samples based on coordinated aberrations in expression of genes

localized to each chromosomal region.28 CIN-RNA score is calculated using the reported CIN signature (70 genes) by the sin-

gle sample gene set enrichment analysis (ssGSEA) method integrated implanted in the R package GSVA (v1.32.0).67

Phylogenetic tree
Phylogenetic tree of multiple lesions from the same patient is constructed with the R package ape (v5.5).68 Briefly, mutations

(including point mutations and indels) in each patient were converted into a binary mutation matrix where 0 denotes absent and 1

denotes present (lesions in rows andmutations in columns, the zero vector was used as the root of the tree). Aftermatrix construction,

the phylogenetic tree of each patient was built based on the neighbor-joining method. The phylogenetic trees were further optimized

using Adobe Illustrator. Trees based on all variations including non-synonymous and synonymous variations are used in this study.

The data for the phylogenetic trees of CM is collected from a previous study.31
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Bulk RNA sequencing
A total amount of 2 mgRNA per sample was used for transcriptomic sequencing library construction. Quality control of RNA, including

RNA degradation, contamination, concentration, and integrity, was performed. The libraries were built using VAHTS mRNA-seq v2

Library Prep Kit (Vazyme, Cat#NR601-02). The final libraries (� 350 bp) assessed by Agilent Bioanalyzer/Fragment Analyzer 5300

were sent for sequencing on the Illumina NovaSeq 6000 platform to generate 150 bp paired-end reads. Sequenced reads were

aligned to human genome hg19 (GENCODE) using STAR (v2.7.3a).69 The row count and transcripts per million (TPM) of each

gene were quantified by RSEM (v1.3.3).70 Only protein-coding genes were retained for downstream analysis. After removing tran-

scripts with 0 value in all samples, the TPM and count of genes assigned by multiple transcripts were determined by the average

expression of these transcripts. TPM values of all genes were further recalculated to obtain a sum of 1,000,000 per sample.

Hierarchical clustering
To establish a robust molecular subtype of AM, several gene expression matrices with different scale methods, multiple filtering

criteria, and various clustering parameters were leveraged. Briefly, log2 (TPM + 1) normalized matrix and variance stabilizing trans-

formed (vst) matrix from row count using ‘vst’ function encapsulated in the R package DESeq2 (v1.24.0)71 were obtained. The clus-

tering results of the normalized matrics were produced by the hierarchical clustering method based on all combinations of the

following three parameters: (1) sd (for filtering highly variable genes, values: 0.75, 0.8, 0.9, 1.0, 1.2, and 1.5); (2) clustering distance

(distance measure method between samples, values: ‘correlation’, and ‘euclidean’); (3) method ( distance measure method between

clusters, values: ‘ward.D’, ‘ward.D2’, ‘complete’, ‘average’, ‘mcquitty’, ‘median’). Finally, a consensus cluster was generated with

the vst transformedmatrix while sd, clustering distance, andmethod were assigned as 1.0, ‘correlation’, and ‘ward.D2’, respectively.

Pathway and signature analysis
Differential expression analyses based on bulk RNA-seq data were performed by DESeq2 using the raw count matrix. Enrichment

analysis was performed using theGeneOntology (GO), Kyoto Encyclopedia of Genes andGenomes (KEGG), andReactome pathway

database. Gene Set Enrichment Analysis (GSEA) was performed using the R package clusterProfiler (v3.14.3).72 The normalized

enrichment score (NES) and p-value of Hallmark pathway gene sets73 were determined by GSEA with 10,000 random permutations

of gene labels.

To characterize the expression signatures in each subtype, the relative gene signature enrichment scores were calculated using

ssGSEA. 29 functional gene expression signatures (Fges) of TME were collected from the previous study.74 The EMT score was

calculated as previously described.75 Cytolytic activity was defined as the average expression level of GZMA and PRF1.76 Pathway

activities were inferred by the R package PROGENy (v1.16.0).77 The immune score was estimated by the R ‘‘estimate’’ package

(v1.0.13).78

TME analysis
To determine the abundances of different cell types comparable at both the intra-sample and inter-sample levels, CIBERSORT79 and

xCell80 were utilized to estimate the relative cell composition and enrichment score, respectively. The deconvolution algorithm

embedded in CIBERSORT was run for 1,000 permutations using the TPM matrix as input. The enrichment scores of 64 different

cell types were calculated using ssGSEA based on signatures provided by xCell.

Single-cell RNA sequencing
Fresh surgically resected tumor tissues wereminced into pieces and digested immediately to single-cell suspension using the Tumor

Dissociation Kit, human (Miltenyi Biotec, Cat#130-095-929). After the quality check upon cell viability and cell concentration, single

cells were loaded for single-cell RNA-seq library preparation according to the manufacturer’s instruction using the 10X Chromium

Single Cell 3’ Library and Gel Bead Kit v3.1 (10X Genomics, Cat#PN-1000075). The libraries were sent for sequencing based on

the Illumina NovaSeq 6000 platform with a depth of at least 100,000 reads per cell to generate paired-end 150 bp reads (Capitalbio

Technology).

For each sample, the feature-barcode matrix was generated using the standard pipeline embedded in Cell Ranger software

(v6.1.2) with GRCh38 as a reference. All matrices from all patients were further merged and analyzed using the R package Seurat

(v4.0.5)81 based on the R (v4.0.3) programming environment. Cells with < 200 features or > 6,000 features or > 20% reads mapped

to mitochondrial genes were filtered out from the downstream analysis. CellCycle scores, including G1, G2/M, and S scores, were

calculated by the ‘CellCycleScoring’ function, and no significant cell-cycle heterogeneity was observed. Then the count matrix was

normalized and scaled by a regularized negative binomial regression and the sequencing depth and percentage of reads mapped to

mitochondrial genes were regressed out using the ‘SCTransform’ function. Expression of the top 3,000 variable genes, except mito-

chondrial genes, ribosome genes, and heat shock protein genes,18 was utilized for dimensionality reduction by principal components

analysis, and the first 20 PCs were selected for the following clustering.

Cell type annotation
Two-step clustering was used to determine cell types in this study. Broad cell identities were assigned through low-resolution clus-

tering by the ‘FindClusters’ function at a resolution of 0.1 after removing doublets and following differential expression analysis by the

‘FindAllMarkers’ function with default parameters. A total of 19 clusters were generated. Melanoma cells are made up of 5 clusters
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(clusters 1, 6, 8, 9, and 15) and highly expressed PMEL, TYRP1,MLANA,MITF, and DCT. Myeloid cells (cluster 7) were identified by

the highest expression of LYZ andMHC class II genes such asHLA-DRA andHLA-DPB1. Other clusters were assigned to endothelial

cells (clusters 0, 16, and 18; PECAM1, VWF, CLDN5), smooth muscle cells (cluster 3; ACTA2, TAGLN, TPM2), NK/T cells (cluster 5;

PTPRC, CD3D, CD2, NKG7), fibroblasts (cluster 4; LUM, COL1A1, COL1A2), neutrophils (cluster 14; S100A8, S100A9, CSF3R), ec-

crine sweat gland cells (ESG, cluster 13; DCD, SAA1, LTF) epithelial cells (cluster 2, containing both keratinocytes and epithelial cells

of ESG; KRT5, KRT10, KRT14), mast cells (cluster 11; TPSB2, CPA3), B/plasma cells (cluster 17; CD79A, MZB1, IGHG1), and

Schwann cells (clusters 10 and 12; S100B, MPZ, SOX10).

Myeloid cells were extracted and re-clustered to define subgroups in detail. Subclusters were identified at the resolution 0.9,

including macrophages (CD68, CD163), Langerhans cells (CD207, CD1A, S100B), cDC1 (CLEC9A, IDO1, XCR1), cDC2_CLEC10A

(CD1C, CLEC10A), cDC2_CXCL9 (CXCL9, CXCL10,), cDC_LAMP3 (LAMP3, CCL22), plasmacytoid DCs (pDC) (IL3RA, CLEC4C),

migrating DCs (CCR7, CD1C), and cycling DCs (MKI67, TOP2A). Macrophages were further divided into five subsets, including

Mph_APOE, Mph_CD163, Mph_APOE_CD163, Mph_ISG15, and Mph_TIMP1. M1 and M2 polarization scores of macrophages

were calculated by the ‘AddModuleScore’ function.82

Tumor cell states
Tumor cells were first determined using the inferCNV package.83 Then these tumor cells were subjected to ‘SCTransform’ and Har-

mony integration (by samples).84 The first 30 PCs based on Harmony integration were used for subsequent unsupervised clustering

at the resolution of 0.2. Marker genes were identified by ‘FindAllMarkers’ and the biological state of each cell state was assessed by

pathway enrichment analysis of variable databases, including MSigDB Hallmark, Reactome, Gene Ontology, and KEGG. Scores of

previously reported CM signatures or cell states were calculated by the ‘AddModuleScore’ function.

Pseudobulk analysis
A pseudo-bulk matrix was generated by summing up all UMI counts across all cells for each gene in each patient. Then the pseu-

dobulk matrix was converted into a TPMmatrix by adjusting the library size. The top 200 significantly upregulated genes in each mo-

lecular subtype (Table S4) were used as the subtype signatures. Patients were assigned based on the signatures for three subtypes.

Ligand-receptor interaction analysis
Ligand-receptor interactions between cells were inferred by CellPhoneDB (v2.1.7).85 To determine the specific ligand-receptor inter-

actions modulating the expression of the EMT tumor cells, the top 100 upregulated genes in all cell clusters were plugged into

NicheNet as potential ligands.86 The top 100 upregulated genes in EMT tumor cells served as potential receptors.

mIHC
4 mm FFPE slides were incubated into Xylene, 100% ethanol, and 95% ethanol and washed before retrieval of antigen at pH 9 and

incubation of BSA. Serial staining was then performed using the AlphaTSA Multiplex IHC Kit (AXT36100031, AlphaX). In each cycle,

the slides were incubated with primary antibody and then corresponding Horseradish peroxidase (HRP)-conjugated secondary anti-

body. Primary antibodies were CD163 (clone-10D6, Abcam, Cat#ab74604, ready-to-use), APOE (clone-D17N, Cell Signaling,

Cat#13366S, 1:1000), and CD68 (ZSGB-Bio, Cat#ZM-0060, 1:500). Fluorescent images were collected using the ZEISS Axioscan7

microscope and analyzed by ZEN (v3.3).

Spatial transcriptomics sequencing
Tumor tissues resected from AM patients were immediately dissected, washed with 13 PBS, and snap-frozen in liquid nitrogen-

chilled isopentane. The tissues were embedded in the OCT compound placed on the dry ice, and stored at -80�C. Sections were

cut at 10 mm thickness and placed onto the chilled Tissue Optimization Slides and Gene Expression Slides (BMKMANU S1000).

The Gene Expression Slide has 1-8 identical 6.836.8 mm capture areas, each with 2,000,000 spots containing barcoded primers.

The primers are attached to the slide by the 5’ end and contain a cleavage site, a T7 promoter region, a partial read 1 Illumina handle,

a spot-unique spatial barcode, a unique molecular identifier (UMI), and Poly(dT)VN. The spots have a diameter of 2.5 mm and are ar-

ranged in a centered regular hexagonal grid so that each spot has six surrounding spots with a center-to-center distance of 4.8 mm.

Tissue optimization, fixation, H&E staining, and imaging, were conducted according to the manufacturer’s protocol. Nuclei staining

was also performed and imaged for subsequent cell segmentation. After reverse transcription and spatial library construction, the

library was sent for quality control and sequenced on the Illumina NovaSeq 6000 platform to generate 150 bp paired-end reads.

Spatial transcriptomics analysis
Raw sequencing files were processed with BSTMatrix (v2.3j) to perform cell segmentation and obtain spatial gene expression

matrices and cell coordinates. Specifically, the GRCh38 genome was used as a reference. The DAPI-stained image was used for

cell segmentation using the watershed algorithm implanted in the cellpose v2.2.3.87 The spatial expression matrix was processed

using Seurat v4.0.5. Cells with more than 100 spatial features and genes expressed in at least 5 cells were retained. The cell identity

was determined by integrated assessment with both unsupervised clustering and CytoSPACE alignment v1.0.6.42 Briefly, cells were

first clustered and annotated using Seurat. Cells located within specific spatial structures were clearly defined, including eccrine

sweat glands, smooth muscle cells, as well as the basal, spinosum, and granulosum layers of the epidermis. Tumor cells, immune
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cells, and stromal cells located within the complex structure of the TMEwere further classified using CytoSPACE. The spatial cell-cell

interaction was performed with CellChat v2.1.1.43

CODEX
CODEX was performed on FFPE tissues with the PhenoCycler Fusion machine according to the manufacturer’s protocol (Akoya

Biosciences). A total of 22 antibodies were used, including 15 ready-to-use oligonucleotide conjugated antibodies and 7 self-con-

jugated antibodies that are not commercially available (detailed in Table S6). 4 mm tissue sections weremounted on poly-L-Lysine-

coated coverslips and then deparaffinized and rehydrated. The tissue-retrieval process is the same as for IHC. Tissues were then

fixed using the prestaining fixing solution and then washed using tissue hydration buffer. For each coverslip, the antibody cocktail

(containing Melan-A, Collagen IV, Pan-CK, E-cadherin, CD3e, CD4, CD8, CD20, CD11c, HLA-DR, CD68, CD86, CD163,

N-cadherin, Ki-67, Tbet, IFNg, PD-L1, CDKN2A, APOE, IGF1, and IGF1R) was then added to the coverslip and staining was per-

formed in a sealed humidity chamber for 3 h. Antibodies were combined at the dilutions indicated in Table S6. After staining, cov-

erslips were washed for 4 min by staining buffer and fixed in wells containing 1.6% paraformaldehyde for 10 min, followed by three

washes in PBS. The coverslips were then incubated in ice-cold 100%methanol on ice for 5 min, followed by three washes in PBS.

The fresh fixative solution was prepared immediately before final fixation, and final fixation was performed at room temperature for

20 min, followed by three washes in PBS. Next, the CODEX reporter plate containing the reporter master mix for every cycle was

prepared accordingly. The CODEX multicycle reaction and image acquisition were performed. Full-resolution multi-color overlay

images were imported into QuPath image analysis software (v0.5.0).88 Areas of low quality, such as folds, dried edges, and bub-

bles, were excluded for further analysis. The tumor regions were identified by an experienced dermatologist (J.G.). Regions of in-

terest were annotated and cell segmentation was performed using the cell detection algorithm implemented in QuPath with default

parameters. The matrix containing the expression levels of each protein, as well as the coordinates of each cell, were exported for

subsequent analysis.

Construction of stable tumor cell lines
Virus preparation in 293T cells was performed using Lipofectamine 3000 Transfection Agent (ThermoFisher, Cat#L3000015)

following the manufacturer’s protocol. Lentivirus was prepared by transfecting the target genes plasmids with two packaging plas-

mids (psPAX2 and pMD2.G) into 293T cells. After 8 hours of incubation, the medium was replaced with 10 ml DEME + 10% FBS.

Lentivirus was harvested at 48h and 72h after transfection. Lentivirus was added into LM-MEL-45 cells at a 1:1 v/v ratio (5 ml)

and plates were centrifuged for 1 h at 2000g and placed in the incubator at 37�C overnight. Stable tumor cells were established after

72 hours of puromycin selection.

The human acral melanoma cell line LM-MEL-45was a gift fromDr. Jun Guo (Peking University Cancer Hospital). Induction of point

mutations, including NRASQ61K, NRASQ61R, KRASG12D, and KITL576P, was performed by transfecting LM-MEL-45 cells with vectors

containing one of the above mutations. LM-MEL-45 IGF1R-KO and NF1-KO cells were generated using CRISPR-Cas9 technology.

LM-MEL-45 cells were seeded in culture dishes to achieve 70-80% confluence the next day. The lentiviral supernatant containing

sgRNA was then added to the cells, along with 8 mg/ml polybrene to enhance efficiency of infection. After 24 hours, the medium

was replaced with fresh medium. Infected LM-MEL-45 cells were subjected to puromycin selection (1 mg/ml) for 72 hours to isolate

cells that successfully integrated the sgRNA. Puromycin-resistant cells were considered sgRNA-integrated and were subsequently

used for downstream experiments. The oligonucleotide sequence of sgRNAs are listed in the key resources table.

Isolation of monocytes and macrophages
For isolation of monocytes, peripheral blood (20 ml) was collected from healthy human donors or patients with AM. Density gradient

separation was performed with Lymphoprep density gradient medium (STEMCELL, Cat#07861). The layer of peripheral bloodmono-

nuclear cells was sent for isolation of CD14+ cells with anti-CD14 magnetic beads (STEMCELL, Cat#19359).

For isolation of TAMs, fresh tumor tissues were cut into approximately 1 mm3 pieces in RPMI-1640 medium (Thermo Fisher Sci-

entific) with 10% fetal bovine serum (FBS, Gibco) and enzymatically digested using the MACS tumor dissociation kit (Miltenyi

Biotec) for 1 h on a rotor at 37�C, according to the manufacturer’s instructions. After filtering using the 70 mm CellStrainer (BD)

in RPMI-1640 medium, the suspended cells were centrifuged at 400 g for 5 min. After removing the supernatant, cell pellets

were resuspended in the sorting buffer (PBS supplemented with 2% FBS) after washing twice with PBS. Throughout the dissoci-

ation procedure, cells were maintained on ice whenever possible. The cells were then centrifuged at 400 g for 5 min with 1 ml cell

suspension above 5 ml 45% Percoll (Sigma, Cat#P4937, diluted with PBS) in the middle and 5 ml 60% Percoll at the bottom in a

15 ml tube. Mononuclear cells were collected from the cell layer in the interphase between 45% and 60% Percoll. CD14+ mono-

cytes and macrophages were isolated by the magnetic-activated cell sorting using anti-CD14 magnetic beads according to the

manufacturer’s instructions.

Co-culture of monocytes with conditioned medium of tumor cells
The LM-MEL-45 cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), 100 U/ml of penicillin,

and 100 mg/ml of streptomycin (Hyclone) in a humidified incubator at 37�Cwith 5%CO2. Conditionedmedium from LM-MEL-45 cells
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was added into the lower chamber and monocytes isolated from the peripheral blood of health donors (5✕105) were added into the

upper chamber of the 12-well plate and co-cultured for 0, 3, 5, 7, 10, and 14 days. After co-culture, macrophages were sent for flow

cytometry analysis, bulk RNA-seq, and immunofluorescence.

Co-culture of tumor cells with APOE+CD163+ macrophages
APOE+CD163+ macrophages were sorted on Day 10 of the above coculture using fluorescence-activated cell sorting, including

staining with CD45 (Biolegend, Cat#368516), CD14 (Biolegend, Cat#301842), APOE (Biolegend, Cat#803405), and CD163 (Bio-

legend, Cat#333606). APOE+CD163+ macrophages alone or with IGF1 inhibitor Xentuzumab (MedChemExpress, Cat# HY-

P99274), were placed in the top insert of transwell (0.4 mm, Corning). IGF1R knocking-out LM-MEL-45 cells, wild-type cells alone

or with IGF1R inhibitor Linsitinib (MedChemExpress, Cat#HY-10191), were placed in the lower chamber of a 12-well plate for

5 days. Tumor cells at Day 0 and Day 5 were sent for flow cytometry analysis, bulk RNA-seq, and immunofluorescence. The concen-

tration of IGF1 in the supernatant of the lower chamber was determined by ELISA (Cloud-Clone, Cat#SEA050Hu).

Flow cytometry analysis
For assessing APOE+CD163+ macrophages, cells were stained with fluorochrome-conjugated monoclonal antibodies against CD45

(Biolegend, Cat#368516), CD14 (Biolegend, Cat#301842), HLA-DR (BD Pharmingen, Cat#560651), APOE (Biolegend, Cat#803405),

and CD163 (Biolegend, Cat#333606). For assessing the EMT level of tumor cells, staining was performed using antibodies against

CD45 (Biolegend, Cat#368516), E-cadherin (Biolegend, Cat#147319), and N-cadherin (Biolegend, Cat#350806). The flow cytometry

data was analyzed by FlowJo v10.8.1.

Immunofluorescence of cultured cells
Cells were incubated with primary antibodies against APOE (Cell Signaling, Cat#13366S) and CD163 (Abcam, Cat#ab74604) for

macrophages, as well as E-cadherin (Cell Signaling, Cat#14472S) and N-cadherin (Cell Signaling, Cat#13116S) for tumor cells, fol-

lowed by incubation with Alexa Fluor 594 goat anti-rabbit IgG (H+L) and Alexa Fluor 488 donkey anti-mouse IgG (H+L) (ZSGB-Bio).

The fluorescent intensity was quantified by Image J (v1.54f).

Invasion assay
Filters (8 mm pore size) precoated with matrigel (Corning) placed in 48-well Boyden chambers (Corning) were used for examining cell

invasion. Wild-type, mutated, or NF1 knocking-out LM-MEL-45 cells were placed into the upper chamber in 0.2 ml of DMEM serum-

free medium (2✕105 cells per filter). DMEM medium supplemented with 10% FBS was placed in the lower chamber as a chemoat-

tractant. After culturing for 24 hours, cells at the lower surface of the filters were fixed in methanol for 15 min at room temperature,

stained using crystal violet for 15 min, visualized, and counted by Image J.

IHC
4 mm slides of FFPE samples were placed in the oven at 65�C for 2 hours. Slides were deparaffinized in xylene 2 times (15 minutes

each) and then transferred through 100%, 95%, and 75% alcohol. Endogenous peroxidase activity was blocked in the 3% H2O2 so-

lution at room temperature for 10 minutes. After heat-induced antigen retrieval and incubation of blocking buffer (3% bovine serum

albumin) for 1 h, incubation with primary antibodies was performed at 4�C overnight. Primary antibodies used in this study include

CD163 (clone-10D6, Abcam, Cat#ab74604, ready-to-use), APOE (clone-D17N, Cell Signaling, Cat#13366S, 1:750), pERK1/2

(Thr202/Tyr204, Cell Signaling, Cat#9101S, 1:200), pAKT (Ser473, Cell Signaling, Cat#9271S, 1:100), E-Cadherin (clone-4A2, Cell

Signaling, Cat#14472S, 1:100), N-Cadherin (clone-D4R1H, Cell Signaling, Cat#13116S, 1:100), and FN1 (clone-E5H6X, Cell

Signaling, Cat#26836S, 1:200). Slides were washed with PBS 3 times and incubated with the secondary antibody at room temper-

ature for 1 h. 100 ml 3,30-diaminobenzidine (DAB) was applied to reveal the color of antibody staining. Finally, slides were dehydrated

through 75%, 95%, and 100% alcohol, cleared by xylene, mounted, and observed.

Each IHC slide was reviewed by two independent pathologists (J.G. and Y.T.). For APOE and CD163, the staining of each marker

was considered positive when both pathologists agreed that at least 50 positive cells were observed with a comparison to the

matched negative control. Only patients with double positive staining of both APOE and CD163 were determined as positive. For

pERK1/2, pAKT, E-Cadherin, N-Cadherin, and FN1, due to their continuous expression spectra reflecting the degree of EMT pheno-

type or the activity levels of MAPK pathway or PI3K-Akt pathway, a multi-level grading (0, 1, 2, 3, based on the staining intensity of

tumor cells) was conducted to each slide. The staining score was defined as the average score of the two independent assessments.

For these five markers, a staining score greater than 1 was considered positive, while a score less than or equal to 1 was considered

negative.

Public datasets
Genomic datasets were obtained from Farshidfar et al.,6 Newell et al.,7 Hayward et al.,24 and TCGA portal (https://portal.gdc.cancer.

gov/). Bulk RNA-seq data was obtained from Farshidfar et al.6 Public scRNA-seq datasets of AM were collected from Zhang et al.22

and Li et al.23
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R (v.3.6.1). Survival analysis was performed with survival (v3.2.13) using the log-rank test.

All tests were two-sided unless otherwise stated. Statistical significance was defined as p values less than 0.05 or q values less than

0.1. For all the box plots, the centerline shows the median; boxes indicate the first and third quartiles; whiskers extend 1.5 times the

interquartile range; dots show all data values. Each experiment was repeated three or more times with biologically independent

samples.
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Figure S1. Cohort composition and genomic characteristics of AM, related 
to Figure 1

(A) Composition of AM patients in the discovery cohort, the expanded AMis cohort, 
and the validation cohort.
(B) Number of patients and samples involved in each sequencing platform in the 
discovery cohort.



(C) Samples involved in WES and bulk RNA-seq.
(D) Pie plots of clinical features between AMis and iAM patients.
(E) Box plot comparing the sequencing coverage of WES samples. The centerline 
shows the median; boxes indicate the first and third quartiles; whiskers extend 1.5 times 
the interquartile range. Mann‒Whitney U test.
(F) Focal regions identified by GISTIC2 in the whole cohort.
(G) Altered frequency comparison of genes in selected signaling pathways in AM. The 
interactions between genes are denoted. The layout of each gene is detailed in the 
legend. For each gene, the statistical significance of comparisons of frequencies 
between AMis and iAM is indicated next to the gene. Fisher’s exact test. ***p < 0.001. 
Alteration types are denoted. m, mutation; a, amplification; d, deletion.
(H) Overall survival, OS, of AM patients stratified by amplification status of 22q11.21. 
Log rank test.
(I) Mean sample cosine distance and average stability of each alteration of total de novo 
signature numbers extracted by SigProfilerExtractor. N = 3 was selected (indicated by 
the grey background) based on a comprehensive evaluation.
(J) De novo signatures identified in AM.



Figure S2. Genomic and transcriptomic comparison between AMis and 
iAM, related to Figure 2

(A) Focal amplifications (top) and deletions (bottom) among AMis and iAM samples. 
In each panel, regions identified in AMis and iAM samples are located on the upper 
and lower sides of the axis, respectively. Cytobands exhibiting significantly different 
frequencies (q < 0.1) are annotated in bold. Red, amplification; blue, deletion; black, 
other cytobands of interest. Fisher’s exact test.
(B) Contributions of three de novo signatures between AMis and iAM. Mann‒Whitney 



U test.
(C) Bar plot comparing the mutated frequency of invasion-preferred drivers among 
AMis and iAM samples from this study and Moon et al. Fisher’s exact test.
(D and E) Bar plot comparing the mutated frequency of BRAF (D) or combinatory 
mutated frequency of BRAF and invasion-preferred drivers (E) between AMis and iAM. 
Fisher’s exact test.
(F) Correlation between the tumor purity and the proportion of subclonal mutations. 
Spearman correlation test.
(G) Box plots showing the CNH-DNA (left) and CIN-RNA score (right) between AMis 
and iAM. Mann‒Whitney U test.
(H) Differentially expressed genes between iAM and AMis. Blue, upregulated in iAM; 
green, upregulated in AMis.
(I) GO terms enriched in iAM and AMis.
(J) Hallmark pathways significantly dysregulated in iAM samples.
(K) Box plots showing the tumor mutational burden (TMB) of all patients (left) or AMis 
patients (right) with (Y) or without (N) adnexal involvement. Mann‒Whitney U test.
(L) Box plots showing the tumor purity of AMis patients (right) with or without adnexal 
involvement. Mann‒Whitney U test.
(M) Box plots showing the frequency of clonal mutations of all patients (left) or AMis 
patients (right) with or without adnexal involvement. Mann‒Whitney U test.
(N and O) Representative images showing staining results of pERK1/2 (N) and pAKT 
(O) in AMis patients. Statistical results are on the right. Scale bar, 50 μm. One-sided 
Fisher’s exact test. *p < 0.05.
Data are represented as boxplots in (B, G, K-M). The centerline shows the median; 
boxes indicate the first and third quartiles; whiskers extend 1.5 times the interquartile 
range.



Figure S3. Phylogenetic trees and CCF plots of AM, related to Figure 3

(A) Phylogenetic trees of AM with two or more regions. The length of each line is 
proportional to the number of mutations. Scale bar, 50 mutations. Black, mutation; red, 
copy number gain; blue, copy number loss. Stacked bar plot showing the mutational 
spectrum of private variants in each region from AM15.



(B) Proportion of subclonal mutations of LCM-captured AMis regions compared to 
non-LCM-captured AMis tumors. The centerline shows the median; boxes indicate the 
first and third quartiles; whiskers extend 1.5 times the interquartile range. Mann‒
Whitney U test.
(C and D) Phylogenetic trees and CCF plots of patients AM67 (C) and AM41 (D). Gray, 
primary tumor; yellow, relapse/metastasis tumor.
(E) Pairwise CCF plots of mutations. Patients were grouped by patterns.



Figure S4. Genomic and transcriptomic characteristics of AM subtypes, 
related to Figure 4

(A-C) Level of marker genes expression (A), proliferation and MAPK (B), and TMB 
(C) in each subtype. Mann‒Whitney U test.
(D) Overall survival, OS, of patients among the three subtypes. Log rank test.
(E) Differentially expressed genes between C3 iAM and non-C3 (C1 & C2) iAM. Red, 
upregulated in C3; blue, downregulated in C3 iAM.
(F) GO terms enriched in C3 iAM and non-C3 iAM.
(G) Hallmark pathways enriched in C3 iAM.
(H and I) Box plots comparing tumor purity among three subtypes (H) and iAM 
subtypes (I). Mann‒Whitney U test.



(J) Box plot showing TMB between C3 iAM and non-C3 iAM. Mann‒Whitney U test.
(K) Box plots showing scores of genomic instability among C3 iAM and non-C3 iAM, 
including the wGII, CNH-DNA, and CIN-RNA score. One-sided Mann‒Whitney U test.
(L) Tumor purity between CE and SD samples. Mann‒Whitney U test.
(M) Forest plot showing multivariate Cox regression analysis of OS for AM.
(N) Stacked bar plot showing the AJCC stage of C3 iAM and non-C3 iAM samples in 
this study. Chi-square test.
(O) Heatmap showing the subtypes of AM samples based on bulk RNA-seq data 
collected from Farshidfar et al.
(P) Stacked bar plot showing the AJCC stage of C3 iAM and non-C3 iAM samples in 
the Farshidfar et al. cohort. Chi-square test.
Data are represented as boxplots in (A-C, and H-L). The centerline shows the median; 
boxes indicate the first and third quartiles; whiskers extend 1.5 times the interquartile 
range. *p < 0.05, **p < 0.01, ***p < 0.001.



Figure S5. TME signatures and correlation to genomic characteristics, 
related to Figure 4

(A) Heatmap of 29 TME functional gene expression signatures across three subtypes.
(B) Expression level of immunotherapeutic targets among three subtypes. Mann‒
Whitney U test. 
(C) Expression level of EMT markers across three subtypes. One-sided Mann‒Whitney 
U test.
(D) Representative images showing positive or negative staining of E-cadherin, FN1, 
and N-cadherin. Scale bar, 50 μm. Statistical results are on the right. Fisher’s exact test.
(E and F) Correlations between TAM scores and genetic features, including TMB (E) 
and CNH-DNA score (F). Spearman correlation test.
(G) Correlation between TAM and EMT scores in the Farshidfar et al. cohort. Spearman 
correlation test.
(H) Forest plots showing the correlation between TME cells and OS (left) or PFS (right) 
of AM patients based on univariate analyses. Significances for inferior and superior 
survival are labeled by red and blue asterisks, respectively. Log rank test.



Data are represented as boxplots in (B, C). The centerline shows the median; boxes 
indicate the first and third quartiles; whiskers extend 1.5 times the interquartile range. 
*p < 0.05, **p < 0.01, ***p < 0.001.



Figure S6. scRNA-seq and subpopulation analysis of AM, related to Figure 
5

(A and B) UMAP plot showing all cells labeled by the tumor stage (A) and the identity 
of samples (B).
(C) Stacked bar plot showing the TME composition in each tumor.



(D) Expression of marker genes for each cell type.
(E) Copy number profile of tumor cells and reference cells (T; Fb, fibroblast; EC, 
endothelial cell) determined by the inferCNV. Red, amplification; Blue, deletion.
(F) Heatmap showing average scores of previously described CM cell states across each 
AM cell state.
(G) UMAP plot showing subclusters of myeloid cells.
(H) Scatter plot of macrophage polarization scores of macrophages colored by TAM 
subclusters.
(I) Heatmap showing the number of cell-cell interactions in AM as determined by 
CellPhoneDB.
(J) Heatmap showing subtypes of AM patients based on scRNA-seq data from Li et al. 
and Zhang et al.
(K) UMAP plot displaying the subsets of macrophages in the AM patients from the 
public scRNA-seq data.
(L) Expression level of marker genes in macrophages from Li et al. and Zhang et al.
(M) Scatter plot of macrophage polarization scores of macrophages colored by TAM 
subclusters annotated in (K).
(N) Correlation between the proportion of APOE+/CD163+ macrophages and EMT 
score in the 10 patients from Li et al. and Zhang et al. Spearman correlation test.



Figure S7. ST and CODEX analyses, related to Figures 6 and 7

(A) Cell segmentation, annotation, and representative spatial distribution of 
APOE+/CD163+ macrophages (red), EMT tumor cells (blue), other tumor cells (gray), 
and other cells (white) in ST samples. For each sample, scale bar, 1 mm for full image 
and 100 μm for enlarged region.
(B) Cell segmentation, annotation, and representative spatial distribution of 
APOE+/CD163+ macrophages (red), EMT tumor cells (orange), other tumor cells (light 



blue), and other cells (gray) in CODEX samples. For each image, the dashed square 
indicates the enlarged area to the right. Scale bar, 100 μm.



Figure S8. Prognostic values of APOE and CD163, related to Figure 8

(A) Representative flow cytometry plots showing identification of APOE+CD163+ 
macrophages at different time points.
(B and C) Correlations between TAM score and the RNA expression of CD163 (B) or 
APOE (C). Spearman correlation test.
(D and E) AUC curves for predicting AM subtypes (D) or progression (E) using the 
RNA expression level of APOE (yellow), CD163 (purple), and combined APOE and 
CD163 (red).
(F) The mIHC images of CD68, APOE, and CD163 in patients AM101 and AM116 
who were identified as APOE+CD163+ by IHC staining. Area indicated with a square 



is enlarged. Gray dashed line, basement membrane. Scale bar, 500 μm (left) and 10 μm 
(right).
(G) Overall survival, OS, of AM from the Farshidfar et al. cohort based on the APOE 
and CD163 expression. Log rank test.
(H) Fraction of APOE+CD163+ patients among two tumor phases. Chi-square test.
(I) Fraction of APOE+CD163+ patients across three AM molecular subtypes. Chi-
square test.
(J) Stacked bar plot showing the T stage of double positive and no infiltration patients. 
Chi-square test.
(K) Forest plots showing independent predictive value for PFS (top) and OS (bottom) 
of AM patients based on multivariate Cox regression analyses in all stained AM patients.
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